Innovative Yeast Solutions Leveraging Non-*Saccharomyces* Strains for Better Wine

CONTENTS

- Selecting the proper Viniflora[™] yeast strain for your wine
- Advantages of Non-Saccharomyces yeasts: bio-protection, flavor & texture, acidity
- Research update: Glutathione and Non-Saccharomyces
 yeast as presented at 2024 ASEV National Meeting
- Product Update: **FrootZen**[™] in freeze-dried format

Selecting the proper Viniflora[™] yeast strain for your wine

Viniflora[®] yeast range for 2024

	Wine Style	Alcohol Tolerance	Species	Optimal Temperature	Inoculation Rate	Fermentation Speed	SO ₂ Tolerance	Key Characteristics
Non Saccharomyces Yeasts								
FROOTZEN™	Sauvignon Blanc, Pinot Gris, Chardonnay, Riesling & Pinot Noir	6% v/v	Pichia kluyveri	15-25°C	100ppm	1	45ppm	High level of volatile thiols Direct inoculation Frozen Product Oxygen scavenging
PRELUDE™	Pinot Noir, Bordeaux varieties, Grenache, Rosé, Barrel matured wikites	9% v/v	Torulaspora delbreuckii	10-25°C	200ppm	\checkmark	30ppm	Produces polysaccharides for texture Caramel / pastries flavour note Perfect for pre-fermentation maceration
CONCERTO™	Light to medium weight reds including Mediterranean styles & Pinot Noir	10% v/v	Lachancea thermotolerans	15-25°C	200ppm	~	30ppm	Lower pH naturally (lactic acid production) Produces polysaccharides for mouthfeel Fruit lift from ethyl lactate Inhibition of Kloeckera & acetic acid bacteria
OCTAVE™	Rosé, Pinot Gris, Chardonnay, Riesling	11% v/v	Lachancea thermotolerans	13-25oC	200ppm	1	30ppm	Inhibition of spontaneous MLF Colour vibrancy in Rosé Lower pH naturally (lactic acid production) Lifted stone fruit character
			Saccharomyc	es Yeasts				
MERIT	Traditional red varieties	17% v/v	Saccharomyces cerevisiae	15-30°C	200ppm	4 4	90ppm	Resistance to high alcohol Red & black fruit flavour Spicy notes
JAZZ™	Traditional red varieties	17% v/v	Saccharomyces cerevisiae	10-30°C	200ppm	~ ~ ~	90ppm	Fruit lift without being confected Elegant structure Velvety complex tannins
Blend of Saccharomyces and Non Saccharomyces Yeasts								
MELODY™	Chardonnay Pinot Noir Grenache	17% v/v	Saccharomyces cerevisiae (60%) Lachancea thermotolerans (20%) Torulaspora delbreuckii (20%)	15-28°C	200ppm	1 1	30ppm	Increases aromatic complexity Rounded mouthfeel

Viniflora[®] yeast range for 2024

Addition Point	/ Purpose	Product	Features	Benefits				
Cold Soak or Onset of		Chr. Hansen Non-Saccharomyces yeasts						
Primary Fermentation/ Bio-Protect Wines - Flavor, Aroma, Tactile, Development		FrootZen	 Pichia kluyveri High levels of volatile thiols, esters, terpenes Increases mouthfeel / palate weight Direct inoculation yeast Low SO₂ and H₂S production Used with your favorite Saccharomyces yeast 	 Grapefruit, passion fruit and citrus Fuller wines No rehydration or acclimatization required Easy on malolactic bacteria 				
		Recommended Wines	Fruit forward white and rosé wines and light red wine	es Sauvignon Blanc Chardonnay Riesling Pinot Gris				
		Temperature Range 50 to 82 °F (10 to 28 °C)	Sugar / Alcohol Yield Fermentation Speed All 16.8 g/L sugar for 1% alcohol Slow All	Icohol Tolerance Relative Nitrogen Needs Lag Phase 6.0% Medium Short				
~		Concerto	 Lachancea thermotolerans Increase total acidity (lactic acid formation) Low SO₂ and H₂S production Used with your favorite Saccharomyces yeast 	 Integrated red and black fruit, spice Softer palate Easy on malolactic bacteria 				
·		Recommended Wines	Fruit forward red and rosé wines Medium body wines	Merlot Zinfandel Grenache Tempranillo Sangiovese				
		Temperature Range 50 to 82 °F (10 to 28 °C)	Sugar / Alcohol Yield Fermentation Speed Al 16.8 g/L sugar for 1% alcohol Slow	Icohol Tolerance Relative Nitrogen Needs Lag Phase 10.0% Medium Moderate				
<i></i>		Prelude	 Torulaspora delbrueckii Heavy producer of mannoproteins / polysaccharide Low SO₂ and H₂S production Used with your favorite Saccharomyces yeast 	 Silky, round wines, increases palate weight For wines matured in oak and increases perceived fullness Easy on malolactic bacteria 				
·		Recommended Wines	Perfect with red & white wines fermented or aged in or	ak Chardonnay Cabernet Sauvignon Syrah Pinot Noir				
		Temperature Range 50 to 82 °F (10 to 28 °C)		Icohol Tolerance Relative Nitrogen Needs Lag Phase 9.0% Medium Moderate to Long				
~		Octave	 Lachancea thermotolerans Enhance fruit flavors (Esters) Low SO₂ and H₂S production Used with your favorite Saccharomyces yeast 	 Very low volatile phenols Pre-fermentation product used on harvested grapes, on crushed grapes, or in the must Easy on malolactic bacteria 				
, The second sec		Recommended Wines	Ideal for white/rosé wines from warm climates					
		Temperature Range 50 to 82 °F (10 to 28 °C)	Sugar / Alcohol Yield Fermentation Speed Al 17.0 g/L sugar for 1% alcohol Slow	Icohol Tolerance Relative Nitrogen Needs Lag Phase 10 - 11.0% Moderate to Long				
			Chr. Hansen Blend of Saccharomyces and non-Se	accharomyces yeasts				
~	~	Melody	• Mixed Cultures: S. cerevisiae, L. thermotolerans, T. delbrueckii • Three yeast strains - 60:20:20% blend • Can tolerate high alcohol • Low SO ₂ and H ₂ S production	 More intense complexity and fruit Enhanced mouthfeel Easy on malolactic bacteria One of the most popular strains 				
			Dry white and red wines Chardonnay Pinot Gris					
		Temperature Range 50 to 90 °F (10 to 32 °C)	Sugar / Alcohol Yield Fermentation Speed Al 17.7 g/L sugar for 1% alcohol Moderate Al	Icohol Tolerance Relative Nitrogen Needs Lag Phase 17.0% Medium Moderate				

MICROBIAL ECOLOGY, POPULATION DYNAMICS 'WILD-FERMENT' CHARDONNAY, KUMEU RIVER WINERY - NZ

FIG. 1. The change in yeast community composition, temperature, and ethanol concentration during a traditional wine ferment. Shown is the change in population size (colony forming units, cfu) of the non-*Saccharomyces* yeasts (thin black dashed lines) and *S. cerevisiae* (thin black solid lines) in four separate barrels over 20 days of ferment. Also shown is the average change in temperature (heavy red line) and ethanol levels estimated from the change in specific gravity (heavy blue line) for these four barrels over days 6–16 of the ferment.

novonesis

Source: Goddard MR. 2008. Ecology 89: 2077-2082

MICROBIAL ECOLOGY, POPULATION DYNAMICS 'WILD-FERMENT' CHARDONNAY, KUMEU RIVER WINERY - NZ

FIG. 1. The change in yeast community composition, temperature, and ethanol concentration during a traditional wine ferment. Shown is the change in population size (colony forming units, cfu) of the non-*Saccharomyces* yeasts (thin black dashed lines) and *S. cerevisiae* (thin black solid lines) in four separate barrels over 20 days of ferment. Also shown is the average change in temperature (heavy red line) and ethanol levels estimated from the change in specific gravity (heavy blue line) for these four barrels over days 6–16 of the ferment.

novonesis

Source: Goddard MR. 2008. Ecology 89: 2077-2082

HOW TO USE NON-SACCHAROMYCES YEASTS - TIMING

- Sequential inoculation is recommended to get the most from a Non-Saccharomyces yeat
- Standard dosage for NSY is one 500g pack per 530-660 gal (or 200-250ppm)
- Inoculate the Non-Sacc when you would normally add yeast, followed by Saccharomyces after 48 hours:

Page

HOW TO USE NON-SACCHAROMYCES YEASTS - TIMING

- Sequential inoculation is recommended to get the most from a Non-Saccharomyces yeat
- Standard dosage for NSY is one 500g pack per 530-660 gal (or 200-250ppm)
- Inoculate the Non-Sacc when you would normally add yeast, followed by Saccharomyces after 48 hours:

Page

For red wines undergoing pre-fermentation maceration (cold-soak), NSY can be added at the start of this process, with Saccharomyces added once must is warmed

novonesis

HOW TO USE NON-SACCHAROMYCES YEASTS - REHYDRATION

15 * CD , of Store ± Countest (K Clap I + Save ---

Check out this clip on rehydration of Non-Saccharomyces yeasts: youtube.com/watch?v=wefPAyKbflE

Guamer Wine Guarder

Page

HOW TO USE NON-SACCHAROMYCES YEASTS - N. MANAGEMENT

- The N demand across different NSY species and strains does vary considerably
- FrootZen can release Amino N into must relatively quickly, while others have similar demand to S. cerevisiae and will not release back into must¹
- It is therefore important to make sure the S. cerevisiae is well

Measure the YAN in must before inoculation

Get a picture of the needs for each parcel before any yeast starts to deplete it

Inoculate with NSY

()2

The NSY can use the native Nitrogen already present in the must

Once Saccharomyces is added 2-3 days later, start N addition

()3

The Saccharomyces needs to go the distance to it is crucial that is well supplied with the Nitrogen it needs

1. Kelly J. Prior, Florian F. Bauer, Benoit Divol, The utilisation of nitrogenous compounds by commercial non-Saccharomyces yeasts associated with wine, Food Microbiology, Volume 79, 2019, Pages 75-84

Advantages of *Non-Saccharomyces* yeasts: biological-protection, flavor & texture, acidity

How does biological-protection work?

How does biological-protection work?

Food Microbiology Vol 103, 2022

14

novonesis

Biological-protection example – protection against oxidation

COLOR AT END OF ALCOHOLIC FERMENTATION

DISOLVED OXYGEN IN SAUVIGNON MUST AT COLD-SETTLING²

Viniflora[™] FrootZen[™] generates a biofilm at the surface of the tank that works as a barrier to oxygen. The layer will dissolve later during the fermentation process.

Biological-protection example - protection against Hanseniaspora uvarum

REDUCTION OF APICULATED YEAST IN CABERNET SAUVIGNON 25°C

Hanseniaspora uvarum (Log CFU/mL)

No growth of *H.uvarum* in presence of Viniflora[™] FrootZen[™] and fast drop down of the contaminant after 4 days.

With FrootZen[™] at day 4

The white colonies are FrootZen[™] yeast and *S*. *cerevisiae*. There is no growth of unwanted *H*. *uvarum*.

Control at day 4

The dark colonies are unwanted *H. uvarum*.

The white colonies are *S*. *cerevisiae*.

Page

Impact of flavor and texture – example of 2-PE and 2-PEA from PRELUDE

CABERNET SAUVIGNON, XINJIANG PROVINCE, CHINA 2019

Taken from : Boqin Zhang, Violeta Ivanova-Petropulos, Changqing Duan, Guoliang Yan. Distinctive chemical and aromatic composition of red wines produced by Saccharomyces cerevisiae co-fermentation with indigenous and commercial non-Saccharomyces strains. Food Bioscience, Volume 41, 2021.

novonesis

Impact of flavor and texture – example of less acetic acid with PRELUDE^m

WINE MADE FROM HIGH-SUGAR SEMILLON MUST, FRANCE 2009

Torulaspora delbrueckii has been shown to produce less acetic acid under high osmotic stress when compared to *Saccharomyces cerevisiae*¹

Bely, Marina, et al. "Impact of mixed Torulaspora delbrueckii–Saccharomyces cerevisiae culture on high-sugar fermentation." *International journal of food microbiology* 122.3 (2008): 312-320.

Impact of flavor and texture – example polysaccharide production

Torulaspora delbrueckii shows highest concentration of polysaccharide

Inoculum, (cells ml ⁻¹)	Ethanol (% v/v)	pН	Total acidity (g l^{-1})	Volatile acidity (g l^{-1})	Glycerol (g l^{-1})	Δ Polysaccharides (mg l ⁻¹)
S. cerevisiae 10 ⁷	13.93 ± 0.06^a	$\textbf{3.20} \pm \textbf{0.04}^{a}$	$\textbf{7.05} \pm \textbf{0.04}^{a}$	$\textbf{0.46} \pm \textbf{0.01}^{a}$	$\textbf{6.23} \pm \textbf{0.54}^{a}$	97 ± 10^a
S. cerevisiae 10 ⁵	13.87 ± 0.00^a	$\textbf{3.16} \pm \textbf{0.05}^{a}$	7.12 ± 0.11^{a}	$\textbf{0.47} \pm \textbf{0.01}^{a}$	$\textbf{6.65} \pm \textbf{0.05}^{a}$	98 ± 11^a
S. cerevisiae 10 ³	$\textbf{13.88} \pm \textbf{0.03}^{a}$	$\textbf{3.17} \pm \textbf{0.21}^{a}$	$\textbf{7.02} \pm \textbf{0.05}^{a}$	0.50 ± 0.06^a	$\textbf{6.46} \pm \textbf{0.52}^{a}$	68 ± 3.0^{a}
C. zemplinina + S. cerevisiae 10^7	13.83 ± 0.04^{a}	$\textbf{3.21} \pm \textbf{0.01}^{a}$	$\textbf{6.88} \pm \textbf{0.27}^{a}$	$\textbf{0.43} \pm \textbf{0.04}^{a}$	$\textbf{6.25} \pm \textbf{0.30}^{a}$	123 ± 42^a
C. zemplinina + S. cerevisiae 10^5	13.78 ± 0.05^a	$\textbf{3.15} \pm \textbf{0.05}^{a}$	$\textbf{6.84} \pm \textbf{0.02}^{a}$	$\textbf{0.44} \pm \textbf{0.06}^{a}$	$\textbf{7.18} \pm \textbf{1.30}^{b}$	140 ± 42^a
C. zemplinina + S. cerevisiae 10^3	13.64 ± 0.04^{b}	$\textbf{3.08} \pm \textbf{0.18}^{b}$	$\textbf{6.88} \pm \textbf{0.04}^{a}$	0.52 ± 0.01^a	7.95 ± 1.28^{b}	181 ± 48^a
L. thermotolerans $+$ S. cerevisiae 10^7	13.80 ± 0.02^a	$\textbf{3.16} \pm \textbf{0.01}^{a}$	$\textbf{7.30} \pm \textbf{0.07}^{a}$	0.38 ± 0.01^{b}	$\textbf{6.95} \pm \textbf{0.20}^{b}$	133 ± 1.0^{a}
L. thermotolerans $+$ S. cerevisiae 10^5	13.80 ± 0.01^a	2.97 ± 0.03^{b}	9.00 ± 1.96^{b}	$0.40\pm0.00^{a,b}$	$\textbf{7.29} \pm \textbf{0.96}^{b}$	139 ± 10^{a}
L. thermotolerans $+$ S. cerevisiae 10^3	<u>13.70 ± 0.18^a</u>	2.90 ± 0.01^{b}	9.20 ± 1.93 ^b	$0.40 \pm 0.00^{a,b}$	7.58 ± 0.46 ^b	158 ± 3.0^{a}
T. delbrueckii + S. cerevisiae 10 ⁷	13.90 ± 0.04^a	$\textbf{3.19} \pm \textbf{0.01}^{a}$	7.12 ± 0.02^a	0.38 ± 0.01^{b}	5.88 ± 0.04^a	157 ± 16^{a}
T. delbrueckii + S. cerevisiae 10 ⁵	13.85 ± 0.08^a	$\textbf{3.10} \pm \textbf{0.08}^{a,b}$	7.36 ± 0.51^a	$0.40\pm0.04^{a,b}$	$\textbf{6.14} \pm \textbf{0.22}^{a}$	269 ± 44^{b}
T. delbrueckii + S. cerevisiae 10 ³	$\textbf{13.76} \pm \textbf{0.04}$	$3.08 \pm 0.11^{a,b}$	$\textbf{7.34} \pm \textbf{0.49}^{a}$	$0.41 \pm 0.01^{a,b}$	$\textbf{6.29} \pm \textbf{0.61}^{a}$	308 ± 42^{b}
M. pulcherrima + S. cerevisiae 10'	13.87 ± 0.01^{a}	3.40 ± 0.08^{c}	$6.33\pm0.27^{\circ}$	$0.30 \pm 0.04^{\circ}$	6.53 ± 0.27^a	120 ± 10^{a}
M. pulcherrima + S. cerevisiae 10^5	13.79 ± 0.13^{a}	$\textbf{3.39} \pm \textbf{0.14}^c$	$\textbf{6.50} \pm \textbf{0.16}^{a}$	$0.34\pm0.07^{\rm b}$	$6.98 \pm \mathbf{0.00^{b}}$	126 ± 10^a
<i>M.</i> pulcherrima + <i>S.</i> cerevisiae 10^3	13.65 ± 0.19^{b}	$\textbf{3.40} \pm \textbf{0.00}^c$	6.64 ± 0.37^a	0.33 ± 0.01^b	$\textbf{7.25} \pm \textbf{0.25}^{b}$	154 ± 17^a

Data are means \pm standard deviations of two independent experiments. Values displaying different superscript letters (^{a, b, c}) within each column are significantly different according to the Duncan test (0.05%).

Increase acidity with natural lactic acid

While *S. cerevisiae* predominantly converts sugar to ethanol, *Lachancea thermotolerans* can divert some sugar into lactic acid

Relevant for hot climates / low-acid musts/juices Also relevant for EtOH reduction

Compounds	SC	SC + MLF	KTSC	KT…SC + MLF
L-Lactic Acid (g/L)	0.01 ± 0.01a	0.54 ± 0.08b	2.75 ± 0.12c	$3.27 \pm 0.19 d$
L-Malic Acid (g/L)	$0.92 \pm 0.02b$	$0.01 \pm 0.01a$	$0.89 \pm 0.04b$	$0.01 \pm 0.01a$
Acetic Acid (g/L)	$0.36\pm0.01b$	$0.44 \pm 0.05c$	$0.32 \pm 0.02a$	$0.39 \pm 0.04 bc$
Residual Sugar (g/L)	$2.08\pm0.30b$	$0.12\pm0.04a$	$2.22 \pm 052b$	$0.16\pm0.04a$
Glycerol (g/L)	$5.96 \pm 0.02a$	$5.89 \pm 0.05a$	$6.48 \pm 0.05b$	$6.36\pm0.06b$
Free SO ₂ (mg/L)		$26.12 \pm 2.38a$		25.25 ± 3.43ab
Total SO ₂ (mg/L)		$56.52 \pm 2.43b$		$44.13\pm3.16a$
Alcohol (% v/v)	$14.56 \pm 0.01c$	$14.54\pm0.02c$	$14.20\pm0.04b$	$14.18\pm0.06b$
рН 🌔	$3.94 \pm 0.01c$	3.99 ± 0.02d	3.74 ± 0.02a	$3.79 \pm 0.02b$
Urea	$1.43 \pm 0.01b$		$1.45 \pm 0.02b$	
Color Intensity	$6.16\pm0.03b$	$5.38\pm0.06a$	$6.29 \pm 0.06c$	$5.51 \pm 0.07a$
Citric Acid (g/L)	$0.22 \pm 0.01a$	$0.03 \pm 0.02b$	$0.24 \pm 0.03a$	$0.04 \pm 0.03b$

Lachancea thermotolerans comparison

CONCERTO AND OCTAVE IN ROSÉ FROM SYRAH, AUSTRALIA 2021

JAZZ

CONCERTO

OCTAVE

OCTAVE

Page

JAZZ

21

CONCERTO

Research update: Glutathione and *Non-Saccharomyces* yeast as presented at 2024 ASEV National Meeting

L-y-glutamyl-L-cystinyl-glycine (Glutathione)

novonesis

Background

- L-γ-glutamyl-L-cystinyl-glycine (aka Glutathione or GSH for short) has become recognised as an important anti-oxidant in wine
- NSY have often been seen as producers of GSH, but this has never been quantified in literature for commercial culture¹
- We therefore set out to investigate if commercial strains could be useful as GSH-producers

1. Binati, R. L., W. J. F. Lemos Junior, and S. Torriani. "Contribution of non-Saccharomyces yeasts to increase glutathione concentration in wine." *Australian Journal of Grape and Wine Research* 27.3 (2021): 290-294.

23

Page

Experimental design

01. Must preparation

02. Fermentation

Two musts were selected for the experiment to represent red and white/rosé conditions:

Chardonnay, adjusted with NaOH to pH 3.60, to be fermented at 25 °C. (YAN = 400mg/L)

Pinot Noir, adjusted with tartaric acid to pH 3.10, to be fermented at 15°C. (YAN = 169mg/L) Each must was fermented with NSY or controls:

Two *S. cerevisiae* starters were used.

A second control with one of the *S*. *cerevisiae* yeasts plus 30g/hL of a commercially available GSH-rich yeast derivative (YD) was included. Run in duplicate, all fermentations were 200ml in size.

The resultant wines were sampled prior to inoculation, at 48 hours and at sugar dryness for GSH (without SO_2). Enzymatic kit MAK440 was used for the analysis. (Merck, Germany).

Results

GSH conc. before, at day two and at end of fermentation

Conclusion

- Viniflora[™] PRELUDE[™] (*Torulaspora delbrueckii* CHCC5755) was the most effective at increasing the GSH concentration across both wines, out-performing the GSH-rich yeast derivative.
- This work could easily be scaled-up to commercial scale and extended to measure markers for oxidation and/or sensory analysis.
- Measuring the related compounds of glutathione disulfide (GSSG) and GSSO₃H, in addition to GSH itself, could also be beneficial.

Product Update: FrootZen[™] in freeze-dried format

Frozen vs freeze-dried

FROZEN LIQUID YEAST

A unique format in the market since 12 years

Yeast cream is deep-frozen just after production.

- Can be used as frozen block or thawed in fridge or waterbath.
- To ship with dry-ice
- To store at -45°C
- Customer can store it at -18°C (<2 month at -18°C)
- Shelf life : 2 years

28

FREEZE-DRIED YEAST

A new development by Novonesis scientists

Yeast cells are gently dried under vacuum.

- Can easily be rehydrated in water or must.
- Can be shipped at ambient temperature (except in hot season if shipment exceed 2 days).
- Store at -18°C
- Shelf life: 1 year

How to use FrootZen[™] for bio-protection

- Reduce sulfites: From 4 6 g/hl to 0 2.5 g/hl
- Wait for 2-3 days before an inoculation of Saccharomyces

- Inoculate 1-2 days before an inoculation of Saccharomyces
- For an optimal effect, prefer a clarification by means of cold settling versus flotation

How to use Viniflora[™] FrootZen[™] to increase the flavor or to boost Saccharomyces

Page

Frozen and freeze-dried formats of FrootZen[™] show similar aroma performance

A sequential inoculation of FrootZen[™] and Saccharomyces JAZZ (added after 3 days) in Chardonnay shows similar production of acetate esters and thiols with the two formats. The level of inoculation recommended is optimized. A double dosage does not significantly change the benefits of the strain.

Viniflora[™] FrootZen[™] can be used by direct pitching or after rehydration

GROWTH ACCORDING TO VARIOUS MODUS OF PREPARATION

FrootZen[™] showed similar growth within 24 hours in Chardonnay, whatever inoculation method was used, in anaerobic conditions.

Comment: The growth rate is higher when oxygen is added (can reach 1.0E+08 CFU/ml)

METHODS OF PREPARATION

- Frozen block thawed overnight at 4°C
- Freeze-dried direct: Powder sprinkled
- Freeze-dried rehydrated: 10 min in 25°C unchlorinated water
- 10 min in 25°C unchlorinated water + activated for 20 min by adding Chardonnay 3:1

Pichia kluyveri vs. Metschnikowia pulcherrima

	<i>Pichia kluyveri</i> (FrootZen™)	Metschnikowia pulcherrima
Format	Freeze-dried or Frozen	Active-dried yeast
Rehydration required	No	Yes
Pellicle formation	Yes	No
O ₂ uptake	Rapid	Medium
Fruit impact	High	Medium
T-SO ₂ tolerance	45mg/l	40mg/l
Nitrogen demand	Low	Low
Symbiosis with S. cerevisiae and O. oeni	High	Medium
BioP capability (oxidation)	High	Medium
BioP capability (microbial spoilage)	High	High
Cold tolerant?	Yes	Yes
Suitability for 'Go Natural'	High	Medium

Any questions?

novonesis

Thank you!